sensitive-word基于 DFA 算法实现的高性能敏感词工具。 项目地址:https://github.com/houbb/sensitive-word
特性
- 6W+ 词库,且不断优化更新
- 基于 fluent-api 实现,使用优雅简洁
- 基于 DFA 算法,性能为 7W+ QPS,应用无感
- 支持敏感词的判断、返回、脱敏等常见操作
- 支持常见的格式转换
- 全角半角互换、英文大小写互换、数字常见形式的互换、中文繁简体互换、英文常见形式的互换、忽略重复词等
- 支持敏感词检测、邮箱检测、数字检测、网址检测等
- 支持自定义替换策略
- 支持用户自定义敏感词和白名单
- 支持数据的数据动态更新(用户自定义),实时生效
- 支持敏感词的标签接口
- 支持跳过一些特殊字符,让匹配更灵活
快速开始
准备
- JDK1.7+
- Maven 3.x+
Maven 引入
<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>sensitive-word</artifactId>
<version>0.12.0</version>
</dependency>核心方法
SensitiveWordHelper 作为敏感词的工具类,核心方法如下:
| 方法 | 参数 | 返回值 | 说明 |
|---|---|---|---|
| contains(String) | 待验证的字符串 | 布尔值 | 验证字符串是否包含敏感词 |
| replace(String, ISensitiveWordReplace) | 使用指定的替换策略替换敏感词 | 字符串 | 返回脱敏后的字符串 |
| replace(String, char) | 使用指定的 char 替换敏感词 | 字符串 | 返回脱敏后的字符串 |
| replace(String) | 使用 * 替换敏感词 | 字符串 | 返回脱敏后的字符串 |
| findAll(String) | 待验证的字符串 | 字符串列表 | 返回字符串中所有敏感词 |
| findFirst(String) | 待验证的字符串 | 字符串 | 返回字符串中第一个敏感词 |
| findAll(String, IWordResultHandler) | IWordResultHandler 结果处理类 | 字符串列表 | 返回字符串中所有敏感词 |
| findFirst(String, IWordResultHandler) | IWordResultHandler 结果处理类 | 字符串 | 返回字符串中第一个敏感词 |
| tags(String) | 获取敏感词的标签 | 敏感词字符串 | 返回敏感词的标签列表 |
判断是否包含敏感词
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(SensitiveWordHelper.contains(text));返回第一个敏感词
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("五星红旗", word);SensitiveWordHelper.findFirst(text) 等价于:
String word = SensitiveWordHelper.findFirst(text, WordResultHandlers.word());WordResultHandlers.raw() 可以保留对应的下标信息:
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
IWordResult word = SensitiveWordHelper.findFirst(text, WordResultHandlers.raw());
Assert.assertEquals("WordResult{startIndex=0, endIndex=4}", word.toString());返回所有敏感词
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());返回所有敏感词用法上类似于 SensitiveWordHelper.findFirst(),同样也支持指定结果处理类。 SensitiveWordHelper.findAll(text) 等价于:
List<String> wordList = SensitiveWordHelper.findAll(text, WordResultHandlers.word());WordResultHandlers.raw() 可以保留对应的下标信息:
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
List<IWordResult> wordList = SensitiveWordHelper.findAll(text, WordResultHandlers.raw());
Assert.assertEquals("[WordResult{startIndex=0, endIndex=4}, WordResult{startIndex=9, endIndex=12}, WordResult{startIndex=18, endIndex=21}]", wordList.toString());默认的替换策略
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text);
Assert.assertEquals("****迎风飘扬,***的画像屹立在***前。", result);指定替换的内容
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text, '0');
Assert.assertEquals("0000迎风飘扬,000的画像屹立在000前。", result);自定义替换策略
V0.2.0 支持该特性。 场景说明:有时候我们希望不同的敏感词有不同的替换结果。比如【游戏】替换为【电子竞技】,【失业】替换为【灵活就业】。 诚然,提前使用字符串的正则替换也可以,不过性能一般。 使用例子:
/**
* 自定替换策略
* @since 0.2.0
*/
@Test
public void defineReplaceTest() {
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
ISensitiveWordReplace replace = new MySensitiveWordReplace();
String result = SensitiveWordHelper.replace(text, replace);
Assert.assertEquals("国家旗帜迎风飘扬,教员的画像屹立在***前。", result);
}其中 MySensitiveWordReplace 是我们自定义的替换策略,实现如下:
public class MyWordReplace implements IWordReplace {
@Override
public void replace(StringBuilder stringBuilder, final char[] rawChars, IWordResult wordResult, IWordContext wordContext) {
String sensitiveWord = InnerWordCharUtils.getString(rawChars, wordResult);
// 自定义不同的敏感词替换策略,可以从数据库等地方读取
if("五星红旗".equals(sensitiveWord)) {
stringBuilder.append("国家旗帜");
} else if("毛主席".equals(sensitiveWord)) {
stringBuilder.append("教员");
} else {
// 其他默认使用 * 代替
int wordLength = wordResult.endIndex() - wordResult.startIndex();
for(int i = 0; i < wordLength; i++) {
stringBuilder.append('*');
}
}
}
}我们针对其中的部分词做固定映射处理,其他的默认转换为 *。
IWordResultHandler 结果处理类
IWordResultHandler 可以对敏感词的结果进行处理,允许用户自定义。 内置实现见 WordResultHandlers 工具类:
- WordResultHandlers.word()
只保留敏感词单词本身。
- WordResultHandlers.raw()
保留敏感词相关信息,包含敏感词的开始和结束下标。
- WordResultHandlers.wordTags()
同时保留单词,和对应的词标签信息。
使用实例
所有测试案例参见 SensitiveWordHelperTest 1)基本例子
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());
List<String> wordList2 = SensitiveWordHelper.findAll(text, WordResultHandlers.word());
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList2.toString());
List<IWordResult> wordList3 = SensitiveWordHelper.findAll(text, WordResultHandlers.raw());
Assert.assertEquals("[WordResult{startIndex=0, endIndex=4}, WordResult{startIndex=9, endIndex=12}, WordResult{startIndex=18, endIndex=21}]", wordList3.toString());- wordTags 例子
我们在 dict_tag_test.txt 文件中指定对应词的标签信息。
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
// 默认敏感词标签为空
List<WordTagsDto> wordList1 = SensitiveWordHelper.findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[]}, WordTagsDto{word='毛主席', tags=[]}, WordTagsDto{word='天安门', tags=[]}]", wordList1.toString());
List<WordTagsDto> wordList2 = SensitiveWordBs.newInstance()
.wordTag(WordTags.file("dict_tag_test.txt"))
.init()
.findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[政治, 国家]}, WordTagsDto{word='毛主席', tags=[政治, 伟人, 国家]}, WordTagsDto{word='天安门', tags=[政治, 国家, 地址]}]", wordList2.toString());更多特性
后续的诸多特性,主要是针对各种针对各种情况的处理,尽可能的提升敏感词命中率。 这是一场漫长的攻防之战。
样式处理
忽略大小写
final String text = "fuCK the bad words.";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuCK", word);忽略半角圆角
final String text = "fuck the bad words.";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuck", word);忽略数字的写法
这里实现了数字常见形式的转换。
final String text = "这个是我的微信:9⓿二肆⁹₈③⑸⒋➃㈤㊄";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[9⓿二肆⁹₈③⑸⒋➃㈤㊄]", wordList.toString());忽略繁简体
final String text = "我爱我的祖国和五星紅旗。";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星紅旗]", wordList.toString());忽略英文的书写格式
final String text = "Ⓕⓤc⒦ the bad words";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[Ⓕⓤc⒦]", wordList.toString());忽略重复词
final String text = "ⒻⒻⒻfⓤuⓤ⒰cⓒ⒦ the bad words";
List<String> wordList = SensitiveWordBs.newInstance()
.ignoreRepeat(true)
.init()
.findAll(text);
Assert.assertEquals("[ⒻⒻⒻfⓤuⓤ⒰cⓒ⒦]", wordList.toString());更多检测策略
邮箱检测
final String text = "楼主好人,邮箱 sensitiveword@xx.com";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[sensitiveword@xx.com]", wordList.toString());连续数字检测
一般用于过滤手机号/QQ等广告信息。 V0.2.1 之后,支持通过 numCheckLen(长度) 自定义检测的长度。
final String text = "你懂得:12345678";
// 默认检测 8 位
List<String> wordList = SensitiveWordBs.newInstance().init().findAll(text);
Assert.assertEquals("[12345678]", wordList.toString());
// 指定数字的长度,避免误杀
List<String> wordList2 = SensitiveWordBs.newInstance()
.numCheckLen(9)
.init()
.findAll(text);
Assert.assertEquals("[]", wordList2.toString());网址检测
用于过滤常见的网址信息。
final String text = "点击链接 www.baidu.com查看答案";
List<String> wordList = SensitiveWordBs.newInstance().init().findAll(text);
Assert.assertEquals("[链接, www.baidu.com]", wordList.toString());
Assert.assertEquals("点击** *************查看答案", SensitiveWordBs
.newInstance()
.init()
.replace(text));引导类特性配置
说明
上面的特性默认都是开启的,有时业务需要灵活定义相关的配置特性。 所以 v0.0.14 开放了属性配置。
配置方法
为了让使用更加优雅,统一使用 fluent-api 的方式定义。 用户可以使用 SensitiveWordBs 进行如下定义:
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.ignoreCase(true)
.ignoreWidth(true)
.ignoreNumStyle(true)
.ignoreChineseStyle(true)
.ignoreEnglishStyle(true)
.ignoreRepeat(false)
.enableNumCheck(true)
.enableEmailCheck(true)
.enableUrlCheck(true)
.enableWordCheck(true)
.numCheckLen(8)
.wordTag(WordTags.none())
.charIgnore(SensitiveWordCharIgnores.defaults())
.init();
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(wordBs.contains(text));配置说明
其中各项配置的说明如下:
| 序号 | 方法 | 说明 | 默认值 |
|---|---|---|---|
| 1 | ignoreCase | 忽略大小写 | true |
| 2 | ignoreWidth | 忽略半角圆角 | true |
| 3 | ignoreNumStyle | 忽略数字的写法 | true |
| 4 | ignoreChineseStyle | 忽略中文的书写格式 | true |
| 5 | ignoreEnglishStyle | 忽略英文的书写格式 | true |
| 6 | ignoreRepeat | 忽略重复词 | false |
| 7 | enableNumCheck | 是否启用数字检测。 | true |
| 8 | enableEmailCheck | 是有启用邮箱检测 | true |
| 9 | enableUrlCheck | 是否启用链接检测 | true |
| 10 | enableWordCheck | 是否启用敏感单词检测 | true |
| 11 | numCheckLen | 数字检测,自定义指定长度。 | 8 |
| 12 | wordTag | 词对应的标签 | none |
| 13 | charIgnore | 忽略的字符 | none |
忽略字符
说明
我们的敏感词一般都是比较连续的,比如【傻帽】 那就有大聪明发现,可以在中间加一些字符,比如【傻!@#$帽】跳过检测,但是骂人等攻击力不减。 那么,如何应对这些类似的场景呢? 我们可以指定特殊字符的跳过集合,忽略掉这些无意义的字符即可。 v0.11.0 开始支持
例子
其中 charIgnore 对应的字符策略,用户可以自行灵活定义。
final String text = "傻@冒,狗+东西";
//默认因为有特殊字符分割,无法识别
List<String> wordList = SensitiveWordBs.newInstance().init().findAll(text);
Assert.assertEquals("[]", wordList.toString());
// 指定忽略的字符策略,可自行实现。
List<String> wordList2 = SensitiveWordBs.newInstance()
.charIgnore(SensitiveWordCharIgnores.specialChars())
.init()
.findAll(text);
Assert.assertEquals("[傻@冒, 狗+东西]", wordList2.toString());敏感词标签
说明
有时候我们希望对敏感词加一个分类标签:比如社情、暴/力等等。 这样后续可以按照标签等进行更多特性操作,比如只处理某一类的标签。 支持版本:v0.10.0
入门例子
接口
这里只是一个抽象的接口,用户可以自行定义实现。比如从数据库查询等。
public interface IWordTag {
/**
* 查询标签列表
* @param word 脏词
* @return 结果
*/
Set<String> getTag(String word);
}配置文件
我们可以自定义 dict 标签文件,通过 WordTags.file() 创建一个 WordTag 实现。
- dict_tag_test.txt
五星红旗 政治,国家 格式如下: 敏感词 tag1,tag2
实现
具体的效果如下,在引导类设置一下即可。 默认的 wordTag 是空的。
String filePath = "dict_tag_test.txt";
IWordTag wordTag = WordTags.file(filePath);
SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
.wordTag(wordTag)
.init();
Assert.assertEquals("[政治, 国家]", sensitiveWordBs.tags("五星红旗").toString());;后续会考虑引入一个内置的标签文件策略。
动态加载(用户自定义)
情景说明
有时候我们希望将敏感词的加载设计成动态的,比如控台修改,然后可以实时生效。 v0.0.13 支持了这种特性。
接口说明
为了实现这个特性,并且兼容以前的功能,我们定义了两个接口。
IWordDeny
接口如下,可以自定义自己的实现。 返回的列表,表示这个词是一个敏感词。
/**
* 拒绝出现的数据-返回的内容被当做是敏感词
* @author binbin.hou
* @since 0.0.13
*/
public interface IWordDeny {
/**
* 获取结果
* @return 结果
* @since 0.0.13
*/
List<String> deny();
}比如:
public class MyWordDeny implements IWordDeny {
@Override
public List<String> deny() {
return Arrays.asList("我的自定义敏感词");
}
}IWordAllow
接口如下,可以自定义自己的实现。 返回的列表,表示这个词不是一个敏感词。
/**
* 允许的内容-返回的内容不被当做敏感词
* @author binbin.hou
* @since 0.0.13
*/
public interface IWordAllow {
/**
* 获取结果
* @return 结果
* @since 0.0.13
*/
List<String> allow();
}如:
public class MyWordAllow implements IWordAllow {
@Override
public List<String> allow() {
return Arrays.asList("五星红旗");
}
}配置使用
接口自定义之后,当然需要指定才能生效。 为了让使用更加优雅,我们设计了引导类 SensitiveWordBs。 可以通过 wordDeny() 指定敏感词,wordAllow() 指定非敏感词,通过 init() 初始化敏感词字典。
系统的默认配置
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(WordDenys.system())
.wordAllow(WordAllows.system())
.init();
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(wordBs.contains(text));备注:init() 对于敏感词 DFA 的构建是比较耗时的,一般建议在应用初始化的时候只初始化一次。而不是重复初始化!
指定自己的实现
我们可以测试一下自定义的实现,如下:
String text = "这是一个测试,我的自定义敏感词。";
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(new MyWordDeny())
.wordAllow(new MyWordAllow())
.init();
Assert.assertEquals("[我的自定义敏感词]", wordBs.findAll(text).toString());这里只有 我的自定义敏感词 是敏感词,而 测试 不是敏感词。 当然,这里是全部使用我们自定义的实现,一般建议使用系统的默认配置+自定义配置。 可以使用下面的方式。
同时配置多个
- 多个敏感词
WordDenys.chains() 方法,将多个实现合并为同一个 IWordDeny。
- 多个白名单
WordAllows.chains() 方法,将多个实现合并为同一个 IWordAllow。 例子:
String text = "这是一个测试。我的自定义敏感词。";
IWordDeny wordDeny = WordDenys.chains(WordDenys.system(), new MyWordDeny());
IWordAllow wordAllow = WordAllows.chains(WordAllows.system(), new MyWordAllow());
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(wordDeny)
.wordAllow(wordAllow)
.init();
Assert.assertEquals("[我的自定义敏感词]", wordBs.findAll(text).toString());这里都是同时使用了系统默认配置,和自定义的配置。 注意:我们初始化了新的 wordBs,那么用新的 wordBs 去判断。而不是用以前的 SensitiveWordHelper 工具方法,工具方法配置是默认的!
spring 整合
背景
实际使用中,比如可以在页面配置修改,然后实时生效。 数据存储在数据库中,下面是一个伪代码的例子,可以参考 SpringSensitiveWordConfig.java 要求,版本 v0.0.15 及其以上。
自定义数据源
简化伪代码如下,数据的源头为数据库。 MyDdWordAllow 和 MyDdWordDeny 是基于数据库为源头的自定义实现类。
@Configuration
public class SpringSensitiveWordConfig {
@Autowired
private MyDdWordAllow myDdWordAllow;
@Autowired
private MyDdWordDeny myDdWordDeny;
/**
* 初始化引导类
* @return 初始化引导类
* @since 1.0.0
*/
@Bean
public SensitiveWordBs sensitiveWordBs() {
SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
.wordAllow(WordAllows.chains(WordAllows.system(), myDdWordAllow))
.wordDeny(myDdWordDeny)
// 各种其他配置
.init();
return sensitiveWordBs;
}
}敏感词库的初始化较为耗时,建议程序启动时做一次 init 初始化。
动态变更
为了保证敏感词修改可以实时生效且保证接口的尽可能简化,此处没有新增 add/remove 的方法。 而是在调用 sensitiveWordBs.init() 的时候,根据 IWordDeny+IWordAllow 重新构建敏感词库。 因为初始化可能耗时较长(秒级别),所有优化为 init 未完成时不影响旧的词库功能,完成后以新的为准。
@Component
public class SensitiveWordService {
@Autowired
private SensitiveWordBs sensitiveWordBs;
/**
* 更新词库
*
* 每次数据库的信息发生变化之后,首先调用更新数据库敏感词库的方法。
* 如果需要生效,则调用这个方法。
*
* 说明:重新初始化不影响旧的方法使用。初始化完成后,会以新的为准。
*/
public void refresh() {
// 每次数据库的信息发生变化之后,首先调用更新数据库敏感词库的方法,然后调用这个方法。
sensitiveWordBs.init();
}
}如上,你可以在数据库词库发生变更时,需要词库生效,主动触发一次初始化 sensitiveWordBs.init();。 其他使用保持不变,无需重启应用。
Benchmark
V0.6.0 以后,添加对应的 benchmark 测试。 BenchmarkTimesTest
环境
测试环境为普通的笔记本:
处理器 12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz
机带 RAM 16.0 GB (15.7 GB 可用)
系统类型 64 位操作系统, 基于 x64 的处理器ps: 不同环境会有差异,但是比例基本稳定。
测试效果记录
测试数据:100+ 字符串,循环 10W 次。
| 序号 | 场景 | 耗时 | 备注 |
|---|---|---|---|
| 1 | 只做敏感词,无任何格式转换 | 1470ms,约 7.2W QPS | 追求极致性能,可以这样配置 |
| 2 | 只做敏感词,支持全部格式转换 | 2744ms,约 3.7W QPS | 满足大部分场景 |
拓展阅读
敏感词工具实现思路DFA 算法讲解敏感词库优化流程java 如何实现开箱即用的敏感词控台服务?v0.11.0-敏感词新特性及对应标签文件pinyin 汉字转拼音pinyin2hanzi 拼音转汉字segment 高性能中文分词opencc4j 中文繁简体转换nlp-hanzi-similar 汉字相似度word-checker 拼写检测sensitive-word 敏感词